Podcasti zgodovine

John Ericsson

John Ericsson

John Ericsson se je rodil leta 1803 v Varmlandu na Švedskem. Kot mlad fant se je zanimal za inženiring in pri 13 letih izdelal tehnične risbe za kanal Gota. Služila je kot oficir v švedski vojski (1816-26), preden se je preselila v Anglijo, da bi poiskala sponzorstvo za novo vrsto toplotnega motorja, ki ga je izumil, in ki je za pogon uporabil širjenje pregretega zraka.

Ericsson je živel v Londonu, kjer je sklenil partnerstvo z Johnom Braithwaiteom. Leta 1829 sta oba moška producirala Novost, eden od vnosov za Rainhill Trials. Zasnova je temeljila na takrat zgrajenih cestnih parnih vagonih. Lokomotiva, zgrajena v šestih tednih, ni bila preizkušena, preden je oktobra 1829 potekalo tekmovanje, ki ga je organizirala železnica Liverpool & Manchester.

Tehta le 2 toni 3 kwt Novost je bil precej manjši od ostalih vnosov. Bil je tudi najhitrejši in dosegel hitrost 28 km / h med preizkušnjami, ki so potekale prvi dan. To je bilo 4 km / h hitreje kot Raketa upravljal med otvoritveno sejo. Drugi dan se je cev kotla pregrela in poškodovala. Ericsson in Braithwaite sta morala za popravilo delno razstaviti kotel. Parno tesne spoje je bilo treba izdelati s cementom, ki se običajno strdi teden dni. Braithwaite in Ericsson sta morala naslednji dan ven in ni presenetljivo, ko je lokomotiva dosegla 15 km / h, so spoji začeli pihati. Škoda je bila velika in prisiljeni so se umakniti iz konkurence.

Po poskusih Rainhill se je Ericsson obrnil k gradnji ladij in leta 1836 je razvil uspešen vijačni propeler. Razočaran nad podporo, ki jo je dobil v Angliji, je leta 1839 emigriral v ZDA. Nadaljeval je z eksperimentiranjem in leta 1849 oblikoval Princeton, prva bojna ladja s kovinskim ohišjem na vijak in prva, ki je imela svoje motorje pod vodno črto.

Ob izbruhu državljanske vojne je predsednik Abraham Lincoln ameriški mornarici odredil gradnjo ladje, ki bi lahko pomagala premagati konfederate. Več vodilnih inženirjev, vključno z Ericssonom, so prosili, naj prispevajo možne načrte za novo ladjo. Ko je Ericssonov predlog, Monitor, je mornarica zavrnila, uspelo mu je pridobiti posebno srečanje s predsednikom. Lincoln je bil navdušen nad Ericssonovimi idejami in je dobil pogodbo.

Gradnja Monitor se je začel oktobra 1861. Končan v samo 118 dneh, je bil zgrajen po ceni le 275.000 USD. Ladja, skoraj v celoti iz železa, je imela oklepno vrtljivo kupolo, ki je držala dva topa. Ta vojaška ladja z dvema pištolama s 57-člansko posadko je bila uporabljena za uspešno blokado obale Konfederacije.

Ericssonovi izumi so revolucionirali navigacijo in gradnjo bojnih ladij, vključno z njegovo ladjo Uničevalec (1878), ki bi lahko izstrelila podmorniška torpeda. Raziskal je tudi možnost uporabe sončne energije ter gravitacije in plimovanja kot virov energije. John Ericsson je umrl leta 1889.

Naslednji motor, ki je pokazal svoje moči, je bil "Novost" gospodov Braithwaite in Ericsson. Velika lahkotnost tega motorja (približno za polovico lažja od motorja gospoda Stephensona), njegova kompaktnost in čudovita izdelava sta vzbudila vsesplošno občudovanje; čustvo se je s svojimi res čudovitimi predstavami hitro spremenilo v popolno čudo. Odločeno je bilo, da najprej poskusimo s svojo hitrostjo; to je tisto, s čimer bi šel, le s svojim komplimentom koksa in vode, pri čemer bi ga upravljala gospoda Braithwaite in Ericsson. Skoraj naenkrat je odletel z neverjetno hitrostjo osemindvajset milj na uro in dejansko je naredil eno miljo v neverjetno kratkem prostoru ene minute in 53 sekund! Prav tako nismo opazili občutnega padca hitrosti; bil je enoten, stabilen in neprekinjen. Če bi bila železnica dokončana, bi motor s to hitrostjo v eni uri prehodil skoraj celo pot od Liverpoola do Manchestera; in gospod Braithwaite je res javno ponudil vložek tisoč funtov, da bo takoj, ko se odpre cesta, v tem času opravil vso razdaljo.

Preskušanje lokomotivskih motorjev lahko obravnavamo kot skorajda konec. Obžalovati je treba, da "Novost" ni bila zgrajena pravočasno, da bi imela enako možnost izvajanja, kot jo je imel motor gospoda Stephensona, ali da v Londonu ali njeni bližini ni železnice, kjer bi lahko poskusi z njo so bili preizkušeni. Očitno bo trajalo nekaj tednov, da se izpopolni delovanje stroja in pravilno prilega spoje, zato sta gospoda Braithwaite in Ericsson ravnala modro, ko sva se umaknila s tekmovanja.

Gospoda Braithwaite in Ericsson sta se tako častno umaknila s tekmovanja in si lahko priznala, da bo znanstveni svet ustregel njihovim prizadevanjem ter z zaskrbljenostjo gledala na hiter zaključek svojega elegantnega in kompaktnega motorja pripravljeni prenesti najhujšo "preizkušnjo", ki bi jo sodniki lahko usmerili.

Novost "še vedno ostaja v Liverpoolu, gospoda Braithwaite in Ericsson pa sta javno objavila, da bosta takoj, ko bo popravljena in bo cement že dovolj utrjen, sklenila (z dovoljenjem direktorjev) razstavo svojih pooblastil. ; in pokazati, da je bilo za nesreče, s katerimi se je na žalost srečala, več kot enako izpolnjevanju naloge, ki ji je bila nazadnje dodeljena.

Gospod Stephenson tako ostaja jasen; in mu iskreno čestitamo za verjetnost, da bo kmalu prejel nagrado 500 funtov. To mu pripada zaradi popolnosti, do katere je pripeljal staromodni motor lokomotive, toda glavna nagrada javnega mnenja je tista, ki sta jo pridobila gospoda Braithwaite in Ericsson, za odločno izboljšanje aranžmaja, varnost, preprostost ter gladkost in stabilnost motorja lokomotive; in četudi so sedanja dela stroja nepopolna, je nedvomno - in verjamemo, da govorimo mnenje devetih desetin inženirjev in znanstvenikov, ki so zdaj v Liverpoolu -, da je načelo in ureditev tega londonskega motorja tisto, kar bodo sledile pri gradnji vseh prihodnjih lokomotiv.


John Ericsson

John Ericsson je izumil ladijski propeler in v svojo zasnovo monitorja iz državljanske vojne vgradil znamenito napravo. Ericsson, rojen v švedski provinci Vermland, je najprej delal pri načrtovanju švedskega kanala. Med delom na kanalu se je učil matematike in naravoslovja. Švedski vojski se je pridružil pri 17 letih in opravil topografsko raziskovanje.

Leta 1826 se je preselil v London, kjer je pokazal širino svojega inženirskega genija z razvojem ali izboljšanjem prenosa energije s stisnjenim zrakom, novimi vrstami parnih kotlov, kondenzatorjem za parne stroje na morju (tako so ladje lahko potovale dlje), motorji bojnih ladij pod vodni vod (za zaščito pred ognjem školjk), parni gasilski stroj, parna lokomotiva, aparat za pridobivanje soli iz slanice, pregreti parni stroji ter plamenski ali "kalorični" motor. Ericssonov najtrpežnejši izum je bil vijačni propeler, ki je še vedno glavna oblika pomorskega pogona.


John Ericsson - Zgodovina

(arhivirana kopija na mrtvo povezavo http://www.argonet.co.uk/users/bobsier/pion4.html)

John Ericsson se je rodil v Vermlandu na Švedskem. Leta 1826 je prišel v Anglijo z delujočim vzorčnim motorjem, ki ga je imenoval Plameni motor. Zdi se, da je bil to motor z odprtim ciklom z notranjim izgorevanjem, ki je dovolj dobro deloval pri uporabi smolnatega lesa, a je kmalu pregorel pri uporabi z angleškim premogom, ki je oddajal intenzivnejšo toploto. Projekt so opustili.


Ericsson je izdelal uspešnejši motor, ki je deloval po zaprtem ciklu z zunanjim ogrevanjem. Delovni model je leta 1833 demonstriral v Londonu, temu je rekel njegov kalorični motor. Ericsson je ta stroj ocenil s 5 KM. Uporabil je dva valja z dvojnim delovanjem po 14 palcev (vroči valj) in premera 10 1/4 palca (hladen valj).


Za obliko regeneracije smo uporabili cevni toplotni izmenjevalec. Čeprav je Ericsson za to obliko regeneracije zahteval prednost izuma, ga je leta 1816 patentiral Robert Stirling.
Ericsson ni pričakoval tega poskusa. Svoje zanimanje je omejil na paro do leta 1838, ko je bil zgrajen poskusni motor s 24 KM z regeneratorjem iz žične gaze. Ta stroj ni bil izpopolnjen, ker je naslednje leto Ericsson iz Anglije odšel v Ameriko.

Ericsson se je naselil v New Yorku, kjer je med letoma 1840 in 1850 zgradil osem poskusnih motorjev z regeneratorji iz žične gaze. Ti motorji so delovali v odprtem ciklu z zunanjim ogrevanjem in z uporabo dveh batov neenakih premerov.


Leta 1851 je Ericsson prepričal svoje finančne podpornike, da zgradijo kalorično ladjo Ericsson. Vesoljska ladja s 260 čevlji, ki jo poganja štirivaljni kalorični motor. Vsak valj je imel premer 168 palcev s stožcem 6 čevljev. Ladja ni uspela in na žalost za Ericsson je potonila v nevihti pri New Yorku. Ko je bil Ericsson dvignjen, so ga opremili s parnimi stroji. Ti parni stroji so bili kasneje odstranjeni in ladja je delovala kot jadrnica do leta 1898, ko jo je v nevihti, ob zahodni obali Kanade, pripeljalo na kopno.

Ericsson ni bil obupan zaradi neuspeha kalorične ladje in patentiral številne izboljšave v letih 1855-1858. Ti poskusi so skupaj z izboljšanim kaloričnim motorjem združili stroj z odprtim ciklom, ki uporablja pogonski bat in dovodni bat, opremljen z ventili. Ta motor je izkazal takojšen uspeh, saj je bilo v treh letih prodanih več kot 3000. Ta stroj je bil prodan v velikostih od 8 do 32 palčnih premerov cilindrov.

John Ericsson se je zanimal za sončno energijo. Ugotovil je, da njegov majhni kalorični motor ni primeren zaradi ventilov, ki jih je okoli leta 1872 razvil, s premičnim (ali Stirlingovim) motorjem za delo s paraboličnim reflektorjem, namenjenim uporabi v namakanih deželah pacifiške obale na soncu . Motor sicer ni bil uporabljen kot stroj na sončno energijo, vendar so ga njegovi poslovni podporniki prepričali, da je leta 1880 patentiral zasnovo kot črpalni motor, ogrevan na premogovnik ali plin. Motor je najprej izdelalo podjetje Delameter Iron Works, kasneje pa podjetje Rider-Ericsson Engine Co. v velikostih od 5 do 12 palcev s premerom valja.
To naj bi bil zadnji zračni motor, ki ga je razvil John Ericsson.

Njegova biografija, vključno z razpravo o izumu monitorja
Kako deluje črpalka Ericsson

Bibliografija:
Naslednje knjige dajejo tehnične informacije v zvezi z Ericssonovimi izumi:

  • Prispevki k stoletni razstavi
    John Ericsson
    New York, 1876.
    (Ponatisnila leta 1976 Kraljevska švedska akademija za inženirske znanosti, Stockholm).
  • Predavanje o poznih izboljšavah v Steam Navigation in The Arts of Navel Warefare
    s kratkim obvestilom o kaloričnem motorju Ericssons.
    Janez. O. Sargent
    New York. 1844
  • Življenje Johna Ericssona
    Cerkev Williama C.
    New York. 1891.
  • John Ericsson in kalorična doba
    Eugene S Ferguson
    Washington. 1961.
  • John Ericsson. Mannen in uppfinnaren
    Carola Goldkuht
    Stockholm. 1961.
  • Monitor ZDA. Ladja, ki je izstrelila sodobno mornarico
    Edward M Miller
    Annapolis, 1978
    ISBN 0-915268-10-8

Naslednje knjige so netehnične biografije:

  • Rudarski deček in njegov monitor ali kariera in dosežki inženirja Johna Ericssona.
    P C Headley
    New York 1865
  • Yankee s Švedske
    Ruth White
    New York. 1960.
  • Kapitan John Ericsson: Oče Moniterja
    Constance Buel Burnett
    New York, 1960
    (Ta knjiga je bila napisana za mlade)
  • John Ericsson in vojni izumi
    Ann Brophy
    1991
    ISBN 0-382-09943-5
    (Silver Burdett Press: serija Zgodovina državljanske vojne, mladinska književnost)
  • Mož monitorja.
    Jean Lee Latham.
    Objavljeno v New Yorku 1962.


Drugo objavljeno gradivo v zvezi z življenjem Johna Ericssona:


Ericsson danes

Vodimo pot pri ustvarjanju povezanega sveta, v katerem nove tehnologije spreminjajo naš način interakcije in komunikacije. Z inovacijami in rešitvami IKT pomagamo preoblikovati industrijo in ustvariti svet novih možnosti.

Uresničitev 5G

Ericsson je bil ključni igralec v razvoju mobilnih omrežij in 5G ni nič drugačen. Smo vodilni pri oblikovanju 5G svetovnega standarda za naslednjo generacijo brezžične tehnologije. Pravzaprav sodelujemo z nekaterimi največjimi mobilnimi operaterji na svetu, vključno z AT & ampT, China Mobil, Deutche Telecom, Korea Telecom, Turkcell, TeliaSonera, Verizon in Vodafone, da bi 5G postala resničnost.

Rešitve v oblaku

V Ericssonu menimo, da IT ni več samo podporna funkcija. Oblikujemo IT infrastrukturo za vrhunsko rast prihodkov in strateško prednost. Tovrstno preoblikovanje je tisto, kar je Ericsson vedno delal. Naše rešitve v oblaku so oblikovane kot digitalne tovarne: hiperrazmerne, programsko definirane, avtomatizirane in dostopne na način, ki ga še niste videli.

Internet stvari (IoT)

Ko preidemo v mrežno družbo, bodo naprave postajale bolj zmogljive in integrirane v ogromno različnih aplikacij po sektorjih. Ericsson zajema celosten pogled na internet stvari, saj ponuja ključne rešitve za uresničevanje interneta stvari, na primer storitve upravljane povezljivosti, aplikacije in dejavnosti integracije sistemov. Ericssonov pristop je zagotoviti, da obstajajo vsi potrebni deli, da bodo deležniki in uporabniki imeli koristi od interneta stvari.

Korporativna zgodba

V zadnjih 140 letih smo dosegli številne prelomne mejnike, da smo postali vodilni v svetu na področju IKT.


Bitka pri Hampton Roads

Zemljevid prikazuje gibanje ladij v bitki pri Hampton Roads. Slika: Revija The Century, Vol. XXIX, marec 1885, javna domena

Dne 8. marca 1862 je Monitor prispel na Hampton Roads proti koncu mraka. Na cestah Hampton Road se reki Elizabeth in Nansemond srečata z reko James tik pred vstopom v zaliv Chesapeake, ki meji na mesto Norfolk. Tu je Unija postavila blokado, da bi konfederacijske trdnjave Norfolk in Richmond odrezala od preostalega sveta.

Prej istega dne je bil konfederacijski železni CSS Virginia si je prizadeval prekiniti blokado Unije. Virginia imel prosti domet pri lesenih plovilih blokade flote Unije. Fregate Cumberland in Kongresu je bil uničen in Minnesota je bila poškodovana in nasedla. Nebo je gorelo ognjeno oranžno globoko v noč, ko je plamen zajel zapuščeno Kongresu. MonitorPosadka, ljubkovalno znana kot "Monitor Fantje, "pripravljeni na svoj neizogiben boj ob belem dnevu.

Naslednje jutro zgodaj, CSS Virginia samozavestno tekel po vodah, pripravljenih za potop Minnesota in druge ranjene ladje. Predstavljajte si presenečenje posadke, ko so zagledali neznan obris Monitor v daljavi. Kmalu se je začel spopad ironcladov.

Bitka med USS Monitor in CSS Virginia (Merrimack) je trajalo ure brez jasnega zmagovalca. Slika: Currier in Ives, z dovoljenjem Kongresne knjižnice

Bitka je trajala več kot štiri ure, ko sta se plovili streljali drug na drugega in si nista mogli povzročiti resne škode. Konec koncev je bila bitka neodločena, rezultat pa je bil očitno jasen: svetovne strategije pomorskega bojevanja in ladjedelništva so se za vedno spremenile.

Obe ladji sta bili precej enakomerni, oklep vsakega je bil močnejši od ognjene moči nasprotnika. Slika: J.O. Davidson, zahvaljujoč poveljstvu ameriške pomorske zgodovine in dediščine


John Ericsson - Zgodovina

PROSIMO, DA UPORABLJATE NAŠE A do Ž KAZALO ZA NAVIGACIJO TEGA MESTA

Kar se danes zdi običajno, je bilo pred 200 leti precej revolucionarno. Zahvaljujoč predanosti in iznajdljivosti velikih mislecev pri vodnem pogonu imamo ladje z izkoristkom okoli 45-60%. To je lahko veliko višje, če še naprej razvijamo koncept - in to moramo preprečiti, da bi podnebni tlak preprečil 70-80%.

Parni parniki so podobni rotacijskim veslom, saj so naprave za vlečenje. Dobre so za plitve rečne čolne še danes, kjer je manj verjetno, da bi se ujeli s plevelom kot nevarovani propelerji. Razvoj lopaticnih koles je inženirje zamislil o strojih kot pogonu nad jadri - kot o normalnem - zato velik korak naprej, pri razbremenitvi sposobnih mornarjev, da ne bi šli na jadrnice in podobno.

Razvoj propelerja je zaradi prizadevanj številnih izumiteljev prehitel učinkovitost lopatic. To je značilno za razvoj večine tehnologije, kjer nas kolektivni človeški možgani premikajo na ramenih intelektualnih velikanov.

Ladjski vijak deluje na vodo, ki se giblje okoli trupa. Ko se ladja premika naprej, moti laminarni tok vode s turbulencami na krmi trupa, kar pomembno vpliva na delovanje vijaka zaradi načina, kako se voda približa vijaku. To ni bilo cenjeno pri kolesih z veslom na obeh straneh trupa.

Poleg tega, kjer so bili zgodnji propelerji delno vlečne naprave, znanost o letalskih krilih ali hidrogliserjih ni bila cenjena vse do poskusov kril na letalih (na primer) bratov Wright v poznih 1800 -ih. Pred tem so lopatice propelerja po nesreči vključile lastnosti folije.

JOHN ERICSSON izboljšana zasnova ladje z vijačnimi vijaki. Vendar pa Admiralitet ni odobraval izuma kot motečega. Posledično je leta 1839 Ericsson odpeljal svoj talent v New York, kjer je kapitan Robert Stockton pridobil sredstva za 700-tonsko žoln, imenovano USS Princeton. Bližalo se je dokončanje te ladje, zato je Stockton začel delovati, da bi prisilil Ericssona k projektu, pri čemer se je izognil, da bi zunanji uporabniki vedeli, da je Ericsson izumitelj. Takšni boji so običajni za inovatorje, katerih delo in ugled trpijo, vendar je vseeno omembe vredno in Stockton je nato storil vse, da prepreči, da bi Ericsson plačal za svoje delo, ker je vedel, da bo dobro financiran Ericsson zmagal in da bo ta uspeh nato razkril njegovo napačno usmerjanje. .

Kljub temu, da je Ericssonov hladna rama, je britansko admiralstvo vedelo, da ima vijačni pogon očitne prednosti za vojaške ladje. Veslaška kolesa so bila v boju izpostavljena sovražnemu ognju, propeler in njegova mehanizacija pa so bili spravljeni pod krov. Prostor, ki so ga zasedla vesla, je omejeval število pušk, ki jih je lahko nosila bojna ladja, s čimer se je zmanjšala njegova širina. Admiraliteta se je trmasto zavrnila, dokler se Ericsson sicer ni ukvarjal. Nato je leta 1840 prva parna ladja s pogonom na propeler, SS Archimedes, uspešno zaključila vrsto poskusov proti hitrim kolescem na veslu. Ta demonstracija je pritegnila pozornost mornarice in želeli so več podatkov. Leta 1845 se je britanska mornarica odločila, da bosta oba sistema dokončno primerjala. Za primerjavo sta bili izbrani dve skoraj enaki ladji. V kotu vesla je bil prvak, HMS Alecto, težak 880 ton, s parnim strojem 200 KM. Izzivalec je bil HMS Rattler s propelerjem, težak tudi 880 ton in tudi s parnim strojem 200 KM.

Najbolj znani preizkusi so se zgodili marca 1845. Na 80-miljski progi je Rattler zlahka zmagal na dirki ena na ena z Alecto za 23,5 minute. V dirki na 60 milj je z drugačno zasnovo propelerja in proti močnim vetrovom in morjem zmagal Rattler s 40 minutami. Zadnji in najbolj razburljiv krog, bolj reklamni trik, je povezoval obe ladji od krme do krme za vlečenje vlečnice. Alecto je hitreje dosegel polno moč in potegnil Rattlerja za 5 minut nazaj, dokler Rattler ni dosegel polne pare, in Alecto ustavil. Ker so se Alectova vesla besno obračala, je Rattler nato Alecto vlekel nazaj s hitrostjo več kot 2 vozla (3,7 km/h). Šest let po tem, ko je britanska mornarica zasmehovala Ericssonov propeler, so bile vse prihodnje ladje RN tako opremljene. Hitro naprej v leto 2014 in avtonomijo ter bolj razsvetljeno razpoloženje.

Vijačni propeler je bil uveden v drugi polovici 18. stoletja. David Bushnell je izum podmornice (želva) leta 1775 uporabil vijake z ročnim pogonom za navpični in vodoravni pogon. Josef Ressel je leta 1827 zasnoval in patentiral vijačni propeler. Podobno je preizkusil Francis Pettit Smith leta 1836. John Ericsson je leta 1839 predstavil zasnovo vijačnega propelerja na ladji, ki je nato v 40 dneh plula čez Atlantski ocean. V tem času so se še vedno uporabljali mešani modeli lopatic in propelerjev (glej 1858 SS Great Eastern).

Leta 1848 je britansko admiraliteto izvedlo tekmo med vlečenjem med ladjo, ki jo poganja propeler, Rattler, in ladjo z veslom Alecto. Zmagal je Rattler, ki je Alecto vlekel z vzhodno hitrostjo 2,8 vozla (5 km/h), vendar so šele v začetku 20. stoletja plovila na veslo popolnoma nadomestila. Vijačni propeler je zamenjal lopatice zaradi večje učinkovitosti, kompaktnosti, manj zapletenega sistema prenosa energije in zmanjšane dovzetnosti za poškodbe (zlasti v boju).

VLOG VOJNE - Poskus z zmogljivostjo Rattler in Alecto iz leta 1848, kjer je propelerska ladja potegnila veslaški parnik nazaj pri 2,8 vozlih. Kljub temu si je britanska palica v blatu zatiskala oči, najverjetneje, da ne bi motila obstoječih pogodb in posebnih dogovorov, povezanih z njimi.

ZGODOVINA RAZVOJA GONILCEV

1794 - William Lyttleton je patentiral trojni navoj. Ta propeler je bil zasnovan za vgradnjo v okvir, pritrjen na ladijski trup. Morali bi ga poganjati ročni vitli po sistemu vrvi in ​​jermenic. Čoln, opremljen s to napravo, so preizkusili v pristanišču Greenland Dock v Londonu, vendar je bila dosežena hitrost le dve milji na uro.

Trojni navojni vijak je patentiral William Lyttleton leta 1794. Nameščen je bil v okvir, ki je bil lahko pritrjen na premcu, krmi ali na straneh ladje, nekoliko podoben izvenkrmnemu motorju. Vijak je bil zasnovan za ročno upravljanje z vrvmi iz vitlov na krovu plovila.

1800 - Podobno napravo je izumil Edward Shorter. Njegova zasnova je bila sestavljena iz dvokrilnega propelerja na nagnjeni gredi, ki ga podpira bova na krmi plovila. Nagnjeno gred, ki nosi propeler, je skozi kardansko gred poganjala druga gred na ladji nad vodno črto. Transportni Doncaster je bil opremljen s Shorterjevim propelerjem. Z osmimi moškimi v Kastanu, ki jim je zagotovil gonilno moč, je med zatišjem v Gibraltarskem zalivu in kasneje na Malti dosegla hitrost miljo in pol.

PATENTIRANO leta 1800 je bil vijačni propeler Edwarda Shorterja opisan kot "stroj za večno brušenje". Vijak je bil potopljen v ladijski sledi in ga je preprečila potop zaradi boje, pritrjene na gred na skrajnem koncu. Napravo so ročno upravljali in preizkusili na transportnem dogodku v Doncasterju leta 1802. Največja dosežena hitrost je bila manj kot dve milji na uro.

1804 -Edward Shorter je tudi predlagal, da bi njegov propeler lahko poganjal parni stroj, vendar je bil prvi poskus te metode ladijskega pogona pripisan Američanom, polkovniku Johnu Stevensu leta 1804. Čoln polkovnika Stevensa je bil majhen dvojni vijak začetek pare. V pristanišču New York je naredila številne uspešne preizkušnje, vendar ti poskusi niso bili kronani s komercialnim uspehom.

1832 - Pred patentom Ericssonovega propelerja je izumitelj - Bennet Woodcroft - patentiral vijak s korakom, ki se je postopoma povečeval v smeri krme. Večja višina je olajšala doseganje večje hitrosti.

Prvotna zasnova vijačnega propelerja, ki ga je patentiral Sir Francis Smith, je prikazana na desni. Leta 1836 so lansirni F. P. Smith, opremljeni s tem vijakom, preizkusili na Paddingtonskem kanalu v Londonu. Pri tem se je polovica vijaka odlomila, nato pa je plovilo šlo precej hitreje. Izumitelj je nato zasnoval vijak z enim samim obratom, kot je prikazano na levi strani zgoraj - v bistvu, dvokrilni propeler.

1836 -Francis Smith, kmet v podjetju Hendon (Middlesex), je patentiral vijačni propeler z enim navojem z dvema popolnima zavojema, ki spominjata na del velikega vijaka iz plute. Ta se je vrtel v vdolbini na krmi ladje. Smith je svoje prve zgodnje poskuse z vijaki izvedel z modelom, ki ga poganja ura, na ribniku.

Francis Smith je za svoje zgodnje poskuse uporabil modele, Ericsson pa je sprejel podobne ukrepe. Poskusil je z modelno ladjo v krožnem rezervoarju, iz središča katerega je štrlela cevasta roka. Model je bil opremljen z propelerjem, ki ga poganja majhen parni stroj. Para se je v motor dovajala skozi vrtljivo cevasto roko.

Smithov mali čoln je bil tako uspešen, da so pri Wappingu zgradili izstrelitev 6 ton tovora, poimenovanega po izumitelju. Vijak, nameščen na vodoravni gredi, je poganjal stožčasti zobnik skozi navpično gred, ki sega nad vodno črto. Pogon je bil parni stroj s cilindrom s 6-odprtino in 15-palčnim hodom.

FRANCIS SMITH - Zagon Francis Smith je bil preizkušen na Paddingtonskem kanalu, kjer je naključen dogodek privedel do nadaljnjih izboljšav v pogonu ladij. Med enim od izstrelitvenih izletov po kanalu je bila polovica lesenega propelerja odlomljena in na presenečenje posadke se je hitrost plovila takoj povečala. Kovinski vijak, sestavljen iz enega popolnega obrata namesto dveh, je bil nato pritrjen na F. P. Smith, nato pa je s hitrostjo približno pet vozlov in pol opravila nekaj potovanj v ustju Temze od Londona do Folkestona. Njegovi prvi poskusi so bili v Hendonu.

JOHN ERICSSON - Slavni inženir iz Švedske se je upokojil iz švedske vojske, se naselil v Angliji in delal neodvisno od Smitha. Leta 1836 je patentiral tudi vijačni propeler, sestavljen iz dveh bobnov na gredi. Oba bobna sta imela po obodu vrsto spiralnih rezil, rezila na enem bobnu pa so bila nagnjena v smer, ki je v nasprotju s tistimi na drugem bobnu. Zanimivost Ericssonovega propelerja je bila razporeditev obeh bobnov. Ti so bili nameščeni na skupni osi, vendar so se vrteli v nasprotnih smereh. Zadnji boben se je vrtel hitreje, ker je deloval v vodi, ki jo je že spravil naprej boben. Ta ureditev je znana kot protiperji, ki se vrtijo nasproti.

Obrnjena smer zadnjega bobna je bila namenjena preprečevanju izgub, ki jih povzroča rotacijsko gibanje vode za vodilnim bobnom. Dogovor dupleksnih vijakov v morski praksi ni bil upoštevan, ker so izkušnje pokazale, da zaplet ni izboljšal zmogljivosti. Ericsson sam je pogosto uporabljal en sam vijak. V sodobnih torpedih najdemo preživetje dvojnih vijakov, ki se vrtijo v nasprotnih smereh na eni gredi. Ta ureditev se uporablja za preprečevanje "navora" ali sile, ki bi si prizadevala obrniti torpedo v smeri vrtenja enega propelerja.

CONTRA ROTATION - Različica tega se zdaj uporablja v izboljšani obliki za sodobni torpedo. Ta oblika vijaka je bil izum kapitana Johna Ericssona, slavnega švedskega inženirja. Sprednji boben, opremljen s spiralnimi lopaticami, se je vrtel v eno smer, zadnji boben pa v hitrejši smeri. Ni slabo za leto 1836.

1837 - V tem letu je bil vijačni propeler uspešno uporabljen na ladjah, čast, da prispevajo k temu pomembnemu razvoju v pomorskem inženirstvu, imata Francis Pettit Smith in kapitan John Ericsson, ki sta delala neodvisno.

Prvi praktični preizkus Ericssonovega propelerja je bil izveden na Temzi. Za vijačni pogon je bil nameščen 45 -metrski čoln Francis B. Oyden. Vlekla je barko Admiraliteta, na kateri so bili nekateri Lords of Admiralty, od hiše Somerset do Blackwalla in nazaj s povprečno hitrostjo deset vozlov.

1838 - Po izvedenih drugih poskusih je pomorski častnik Združenih držav Amerike, stotnik R. F. Stockton, uredil gradnjo plovila, dolgega 70 čevljev in 10 čevljev širine, z motorji, ki vozijo neposredno do gredi propelerja. To ladjo, Robert F. Stockton, je leta 1838 v Birkenheadu zgradil Laird Bros in s plimovanjem dosegel hitrost trinajst vozlov. Zgodaj leta 1839 je prestopila Atlantik pod platnom in dolgoletno službo vlekla v newyorškem pristanišču pod imenom New Jersey. Ericsson je odšel v ZDA pozneje leta 1839. Tam so njegov izum uporabili v številnih ameriških rečnih parnikih in na ameriški vojni ladji Princeton, zgrajeni leta 1842.

1839 - Po tem poskusu, ko se je njegov vijačni pogon zlomil in povečala zmogljivost, je Smith spremenil svojo patentno specifikacijo in njegov vijak je bil opisan kot sestavljen iz enega samega obrata ali pa dvojnega navoja z dvema pol obratoma. Na ta način je bil razvit dvokrilni vijačni propeler.

Ustanovljeno je bilo podjetje za izkoriščanje Smithovih spremenjenih patentov, istega leta pa je bil predstavljen Arhimed (237 ton). Najprej je bila opremljena z vijakom z enim navojem s premerom 7 čevljev. Ta propeler je bil pozneje zamenjan z vijakom z dvema lopaticama, s premerom 5 čevljev, ki se obrača pri 139 vrtljajih na minuto, povezan z motorjem, ki je z gonilom gredi naredil le 26 vrtljajev na minuto.

Arhimed je dosegel hitrost devetih vozlov in poleg obhoda britanskih otokov odpotoval v Oporto na Portugalskem. Ti uspehi so dokazali primernost vijačnega propelerja za pomorske namene, Francis Smith pa je bil leta 1871 vitez za svoje storitve ladijskega prometa.

1843 - Grof Dundonald je patentiral propeler z nagnjenimi rezili proti krmi, da prepreči kakršen koli odtok vode navzven. Drugi izumitelji so zagotovili koncentrične grebene na rezilih, da bi dosegli isti cilj, nekateri vijaki pa so bili v obliki srpa.

1845 - Prednost vijačnega propelerja nad lopatalnim kolesom za pogon ladij, ki plujejo po oceanu, je bila na splošno sprejeta do konca leta 1845. Aprila tega leta je znameniti "duel" med H.M.S. Rattler in H.M.S. Alecto se je zgodil. Plovila so bila podobne velikosti in enake nazivne konjske moči, toda Rattler, ki ga je poganjal vijak, ko je privezal krmo na krmo z veslom Alecto, je lahko nasprotnika vlekel s hitrostjo skoraj treh vozlov.

Ta preskus pa se ne šteje za dokončnega v prid vijaku, saj so Rattlerjevi motorji razvili 300 nakazanih konjskih moči v primerjavi z Alectovim 141, kljub njihovi enakosti v nazivni konjski moči. Res škoda, da niso uporabili enakih motorjev.

Razvoj vijačnega propelerja je bil poleg učinkovitosti posledica številnih dejavnikov. Vijačni propeler stane manj kot par koles. Prav tako je bilo bolj priročno, da se prilega trupu ladje, saj ni potreboval sponzorjev ali lopatic, ki bi ladje naredile širše.

Za pogon bojnih ladij so bile očitne prednosti vijaka v celoti cenjene, čeprav je Admiralitet sprva mislil, da bi ta način pogona motil krmiljenje. Čudno, glede na to, da so bila krmila običajna. Izjemna prednost propelerja pred veslajočimi kolesi za pomorsko uporabo pa je bila njegova primerjalna odpornost na učinke streljanja. Propelerji so bili na splošno popolnoma potopljeni, pogonska moč pa je bila pod vodno črto.

1860-66-Hermann Hirsch je patentiral srpasti propeler.

1870 - Številne ladje so bile opremljene s tovrstnimi vijaki s štirimi rezili. Prvotno so bila plovila opremljena z vijaki Griffiths, po spremembi pa naj bi se njihove hitrosti povečale za približno en vozel.

MODERNA BRONZA - Danes so veliki propelerji iz litega brona, manjše različice pa uporabljajo bolj eksotične zlitine. Menjalnik za doseganje nasprotne rotacije, ena gred v drugi.

LETALNI VIROVI - Contra-rotating props are the (almost) exclusive realm of powerful engines with very high disk loading. The most recent designs prefer to use more blades and avoid a heavy gearbox, but the efficiency of such props is poorer than that of propellers with lower disk loading and fewer blades. In a way, the efficiency of the eight-bladed propellers of the Hamilton-Sundstrand NP2000 above is similar to that of four two-bladed propellers in sequence, but it is much easier to build with all blades and their pitch mechanism in one hub.

The Antonov An-70 is a medium and long-range four-engine transport aircraft designed in the 1990s. One of the special features of this aircraft is its propulsion with counter-rotating (blue) propellers, the first group comprising 8 blades, the second 6.

SHORT HISTORY OF JOHN ERICSSON

In 1826 Ericsson went to London, where he worked mainly on engines and on locomotives and screw propulsion for boats, receiving 14 patents. English railroad builders kept him profitably at work.

Ericsson invented the caloric steam engine that had a fuel/energy conservation that worked well. He became wealthy with this invention. As early as 1854, Ericsson had worked on designs for an ironclad ship.

In 1861 the Confederate Navy was having the hull of the burned U.S.S. Merrimack covered with iron sheets. The first ironclad was being built by the enemy. Ericsson did not trust or like the U.S. Navy, but was convinced by Cornelius Scranton Bushnell to work on an ironclad for them. Ericsson presented drawings of the USS Monitor, a totally unique and novel design of armored ship, which after much controversy was eventually built and finished on March 6, 1862. The ship went from plans to launch in approximately 100 days, an amazing achievement.

On March 8, the Southern ironclad CSS Virginia was wreaking havoc on the Union Blockading Squadron in Virginia. Then, with the appearance of the Monitor, a battle on March 9, 1862 at Hampton Roads, Virginia, ended in a stalemate between the two iron warships, and saved the Northern fleet from defeat. After this, numerous monitors were built, and are believed to have considerably influenced the victory of the Northern states. Although primitive by modern standards, many basic design elements of the Monitor were copied in future warships by other designers.

Ericsson won a prize in 1840 for the best-designed steam fire engine. He adapted twin screw propellers to a vessel, and by 1844 there were 25 such boats on American waters. In 1844 he completed the 1,000-ton iron frigate U.S.S. Princeton, the first screw-propelled warship and the first with engines and boilers underwater, out of firing range.

ERICSSON'S US NAVY RESENTMENT

Where the British Admiralty failed to comprehend the advantages of Ericssons's propeller invention, this led to what should have been a fortunate contact with the American captain Robert Stockton. Stockton had Ericsson design a propeller steamer for him and told him to bring his invention to the United States of America, as it would supposedly be more welcomed in a land of entrepreneurs.

As a result, Ericsson moved to New York in 1839. Stockton's plan was for Ericsson to oversee the development of a new class of frigate with Stockton using his considerable political connections to lubricate the financial wheels. Finally, after the succession to the Presidency by John Tyler, funds were allocated for a new design. Unfortunately they only received funding for a 700-ton sloop instead of a frigate. The sloop eventually became the USS Princeton, named after Stockton's hometown.

The USS Princeton took about three years to complete and was perhaps the most advanced warship of its time. In addition to twin screw propellers, it was originally designed to mount a 12-inch muzzle loading gun on a revolving pedestal. The gun had also been designed by Ericsson and used the hoop construction method to pre-tension the breech, adding to its strength and safely allowing the use of a larger charge. Other innovations on the ship design included a collapsible funnel and an improved recoil system.

The relations between Ericsson and Stockton grew tense over time and, nearing the completion of the ship, Stockton began working to force Ericsson out of the project.

Stockton carefully avoided letting outsiders know that Ericsson was the primary inventor. Stockton attempted to claim as much credit for himself as possible, even designing a second 12-inch gun to be mounted on the Princeton. Unfortunately, not understanding the design of the first gun (originally named "The Orator", renamed by Stockton to "The Oregon"), the second gun was fatally flawed.

When the ship was initially launched it was a tremendous success. On October 20, 1843 the USS Princeton won a speed competition against the paddle-steamer SS Great Western, which had until then been regarded as the fastest steamer afloat.

Unfortunately, during a firing demonstration of Stockton's gun the breech broke, killing the US Secretary of State Abel P. Upshur and the Secretary of the Navy Thomas Gilmer, as well as six others. Stockton attempted to deflect blame onto Ericsson with moderate success despite the fact that Ericsson's gun was sound and it was Stockton's gun that had failed. Stockton also refused to pay Ericsson and, using his political connections, Stockton managed to block the Navy from paying him.

These actions led to Ericsson's deep resentment toward the US Navy. A warning to any inventor, not to trust navies, or work for them. You are likely to end up working for nothing. Always get payments up front from those looking to benefit from your efforts. Military organisations have absolute power to discredit and ruin anyone who gets in their way.

In the end, Ericsson's ironclad warships earned him a special place in Civil War history, despite the unfortunate episode above. A lesson perhaps to naval officials and everyone else to play with a straight bat.

SOLUTIONS - The chronometer was vital to the ability to create charts and safely navigate the world. The first chronometers were invented by a carpenter's son: John Harrison.

A Marine Chronometer is a clock that is precise and accurate enough to be used as a portable time standard it can therefore be used to determine longitude by means of celestial navigation. When first developed in the 18th century, it was a major technical achievement, as accurate knowledge of the time over a long sea voyage is necessary for navigation, lacking electronic or communications aids. The first true chronometer was the work of one man, John Harrison, spanning 31 years of persistent experimentation and testing that revolutionized ocean navigation, so enabling the Age of Discovery to accelerate.

The Board of Longitude, charged with finding a solution to this navigation problem, failed to recognise when they had found what they were looking for. This is a frequent problem for experts who only want to recognise solutions that fit within their understanding of current knowledge - not accepting anything that does not conform. They would rather deny a solution. The marine world thought otherwise, gratefully accepting these timepieces as essential navigation aids. This included the Royal Navy's Captain James Cook (HMS Endeavour, Discovery & Resolution) and Captain Robert Fitzroy (HMS Beagle) 1763-1779.


John Ericsson - History

Who invented the ironclad Monitor of the American Civil War?

Inventor John Ericsson

U.S. Naval Historical Center

John Ericsson, one of the 19th Century's most creative engineers and inventors, was born on 31 July 1803 in Sweden. As a youth, he joined the Swedish Army, which recognized his talents and put him to work on topographical duties. Ericsson left the Army in 1826 and moved to England, where he pursued a variety of engineering projects, among them the use of screw propellers on ships, the development of extraordinarily large guns and the creation of engines driven by hot air instead of steam.

Ericsson's work attracted the attention Robert F. Stockton , an influential and progressive U.S. Navy officer, who encouraged him to relocate to the United States. During the early 1840s, the two designed a screw-propelled warship, which was commissioned in 1843 as USS Princeton , armed with heavy guns of their devising. The tragic explosion of one of these guns, and efforts to improperly assign the blame to Ericsson, led the strong-willed engineer to redirect his creativity into civilian fields, which he pursued successfully during the 1840s and 1850s.

The outbreak of the American Civil War brought John Ericsson back into formal contact with the Navy, when he designed and produced USS Monitor , a revolutionary armored ship carrying her guns in a rotating turret. Monitor 's successful battle with the Confederate ironclad Virginia on 9 March 1862, made Ericsson a great hero in the North (see Battle of USS Monitor and CSS Virginia ). For the remainder of the conflict, he was actively involved in designing and building a large series of "Monitor"-type turret ships for the Navy.

Ericsson continued his work on maritime and naval technology after the Civil War, producing ships for foreign navies and experimenting with submarines, self-propelled torpedoes and heavy ordnance. He remained active until his death in New York City on 8 March 1889. In August 1890, following a memorial service at New York, his body was placed on board the cruiser Baltimore , which carried him across the Atlantic to his native Sweden for burial.

Three U.S. Navy ships have been named in honor of John Ericsson: the torpedo boat Ericsson (Torpedo Boat # 2) , 1897-1912 and the destroyers Ericsson (DD-56), 1915-1934 and Ericsson (DD-440), 1941-1970

Recommended Reading : The Man Who Made the Monitor: A Biography of John Ericsson, Naval Engineer. Description: Mention Civil War naval confrontations and the Monitor instantly springs to mind. The first of the ironclads, the Monitor not only took part in a major battle, it forever changed the face of naval construction. But who was the man behind the ship? Born in Filipstad , Sweden , in 1803, the brilliant and somewhat eccentric engineer John Ericsson spent his childhood observing his father's work in mining and later learned his engineering skills at the North Atlantic Baltic canal. As a young man Ericsson turned to a variety of projects. In England , he introduced the ship's propeller, built an Arctic expedition vessel and designed some of the first successful steam locomotives. Nadaljevanje spodaj …

Moving to New York in 1839, he soon teamed up with Harry Cornelius Delameter of the Phoenix foundry, a partnership which resulted in Ericsson's most famous work, the USS Monitor. Focusing on the man behind the inventions, this book tells the life story of John Ericsson. It details a number of Ericsson s inventions including a steam-powered fire engine, the first screw-propelled warship, a variety of "hot-air engines," and early experiments in solar power from the roof of his Manhattan home. The main focus is Ericsson's design and construction of the ironclad USS Monitor. One of the first viable armored warships, the Monitor revolutionized naval warfare the world over. The ship s battle with the CSS Virginia at Hampton Roads and its eventual fate off the coast of Cape Hatteras are covered. Ericsson's relationships with contemporaries such as Alfred Nobel and recent developments concerning the recovery of the wreck of the Monitor are also examined. About the Author: Olav Thulesius was professor at Indiana University , University of Trondheim , and Kuwait University . He is also the author of Harriet Beecher Stowe in Florida , 1867 to 1884 (2001). Olav divides his time between the United States and Sweden .

Recommended Reading : War, Technology, and Experience aboard the USS Monitor. Description: In a familiar story, the USS Monitor battled the CSS Virginia (the armored and refitted USS Merrimack) at Hampton Roads in March of 1862. In War, Technology, and Experience aboard the USS Monitor, David A. Mindell adds a new perspective to the story as he explores how mariners -- fighting "blindly" below the waterline -- lived and coped with the metal monster they called the "iron coffin." Mindell shows how the iron warship emerged as an idea and became practicable, how building it drew upon and forced changes in contemporary manufacturing technology, and how the vessel captured the nineteenth-century American popular and literary imaginations. Nadaljevanje spodaj …

Combining technical, personal, administrative, and literary analysis, Mindell examines the experience of the men aboard the Monitor and their reactions to the thrills and dangers that accompanied the new machine. The invention surrounded men with iron and threatened their heroism, their self-image as warriors, even their lives. Mindell also examines responses to this strange new warship by Nathaniel Hawthorne and Herman Melville, who prophetically saw in the Civil War a portent of the mechanized warfare of the future. The story of the Monitor shows how technology changes not only the tools but also the very experience of combat, generating effects that are still felt today in the era of "smart bombs" and push-button wars. "We find new significance in the otherwise well-known history of the Monitor. It is no longer the story of the heroic inventor and his impenetrable weapon thrusting themselves upon a doubtful and conservative bureaucracy. It is no longer the story of a heroic battle and the machine's epic loss soon after. Rather it is a story of people experiencing new machinery, attempting to make sense of its thrills, constrictions, and politics, and sensing its power and impotence -- both in glory and frustration." -- from War, Technology, and Experience aboard the USS Monitor. About the Author: David A. Mindell is Dibner Associate Professor of the History of Engineering and Manufacturing in the Program in Science, Technology, and Society at MIT. He has degrees in Electrical Engineering and Literature from Yale University and a Ph.D. in the History of Technology from MIT. His research interests include the history of military technology, the history of electronics and computing, and archaeology in the deep ocean. He is currently working on a history of feedback, control, and computing in the twentieth century, and on locating and imaging ancient shipwrecks and settlements in the deep regions of the Black Sea .

Recommended Reading : Ironclad , by Paul Clancy (Hardcover). Description: The true story of the Civil War ironclad that saved the Union Navy only to sink in a storm--and its remarkable salvage 140 years later. Ironclad tells the saga of the warship USS Monitor and its salvage, one of the most complex and dangerous in history. The Monitor is followed through its maiden voyage from New York to Hampton Roads, its battle with the Merrimack , and its loss off Cape Hatteras . At the same time, author Paul Clancy takes readers behind the scenes of an improbable collaboration between navy divers and cautious archaeologists working 240 feet deep. Clancy creates a memorable, fascinating read, including fresh insights into the sinking of the Union ship and giving the answer to an intriguing forensic mystery: the identities of the two sailors whose bones were found in the Monitor's recovered turret. Nadaljevanje spodaj …

Its one great battle in the spring of 1862 marked the obsolescence of wooden fighting ships and may have saved the Union . Its terrible end in a winter storm off Cape Hatteras condemned sixteen sailors to a watery grave. And the recovery of its 200-ton turret in August 2002 capped the largest, most complex and hazardous ocean salvage operation in history. In Ironclad, Paul Clancy interweaves these stories so skillfully that the cries of drowning Union sailors sound a ghostly undertone to the cough of diesel generators and the clanging of compression-chamber doors on a huge recovery barge. The din and screech of cannonballs on iron plating echo beneath the hum of electronic monitors and the garbled voices of Navy divers working at the edge of human technology and endurance in water 240 feet deep.

Clancy studied the letters and diaries of the Monitor's long-ago sailors, and he moved among the salvage divers and archaeologists in the summer of 2002. John L. Worden, captain of the Monitor, strides from these pages no less vividly than the remarkable Bobbie Scholley, the woman commander of 160 Navy divers on an extreme mission. Clancy writes history as it really happens, the improbable conjunction of personalities, ideas, circumstances, and chance. The Union navy desperately needed an answer to the Confederacy's ironclad dreadnought, and the brilliantly eccentric Swedish engineer John Ericsson had one. And 140 years later, when marine archaeologists despaired of recovering any part of the Monitor before it disintegrated, a few visionaries in the U.S. Navy saw an opportunity to resurrect their deep-water saturation diving program. From the breakneck pace of Monitor's conception, birth, and brief career, to the years of careful planning and perilous labor involved in her recovery, Ironclad tells a compelling tale of technological revolution, wartime heroism, undersea adventure, and forensic science. This book is must-reading for anyone interested in Civil War and naval history, diving and underwater salvage, or adventures at sea.

Recommended Reading : Confederate Ironclad vs Union Ironclad: Hampton Roads 1862 (Duel). Description: The Ironclad was a revolutionary weapon of war. Although iron was used for protection in the Far East during the 16th century, it was the 19th century and the American Civil War that heralded the first modern armored self-propelled warships. With the parallel pressures of civil war and the industrial revolution, technology advanced at a breakneck speed. It was the South who first utilized ironclads as they attempted to protect their ports from the Northern blockade. Impressed with their superior resistance to fire and their ability to ram vulnerable wooden ships, the North began to develop its own rival fleet of ironclads. Eventually these two products of this first modern arms race dueled at the battle of Hampton Roads in a clash that would change the face of naval warfare. Nadaljevanje spodaj …

Fully illustrated with cutting-edge digital artwork, rare photographs and first-person perspective gun sight views, this book allows the reader to discover the revolutionary and radically different designs of the two rival Ironclads - the CSS Virginia and USS Monitor - through an analysis of each ship's weaponry, ammunition and steerage. Compare the contrasting training of the crews and re-live the horrors of the battle at sea in a war which split a nation, communities and even families. About the Author: Ron Field is Head of History at the Cotswold School in Bourton-on-the-Water. He was awarded a Fulbright Scholarship in 1982 and taught history at Piedmont High School in California from 1982 to 1983. He was associate editor of the Confederate Historical Society of Great Britain, from 1983 to 1992. He is an internationally acknowledged expert on US Civil War military history, and was elected a Fellow of the Company of Military Historians, based in Washington , DC , in 2005. The author lives in Cheltenham , UK .

Recommended Reading : Union Monitor 1861-65. Description: The first seagoing ironclad was the USS Monitor, and its profile has made it one of the most easily recognized warships of all time. Following her inconclusive battle with the Confederate ironclad Virginia on March 9, 1862, the production of Union monitors was accelerated. By the end of the year, a powerful squadron of monitor vessels protected the blockading squadrons off the Southern coastline and was able to challenge Confederate control of her ports and estuaries. Further technological advancements were included in subsequent monitor designs, and by the end of the war the US Navy possessed a modern coastal fleet carrying the most powerful artillery afloat. This book covers the design, development and operational history of the Union ’s Monitor fleet.

Recommended Viewing: The First Ironclads - Into the Modern Era (DVD) (2008). Description: This is the story of the great vessels, the formidable warships, the epic ironclads (early battleships), that changed forever naval ship design as well as naval warfare: the Monitor, the Merrimack (later renamed the Virginia ) and it presents a fascinating animated reconstruction of their epic battle during the American Civil War. Continued below.

The Battle of Hampton Roads, aka Duel of the Ironclads, which made the world's navies tremble as well as obsolete, is handsomely depicted in this video. The First Ironclads – Into the Modern Era is a welcome addition for the individual interested in the Civil War, U.S. Naval Warfare, and shipbuilding and design. It also includes footage from aboard the world's most devastating “sailing ironship” the HMS Warrior.

Recommended Reading : Lincoln and His Admirals (Hardcover). Description: Abraham Lincoln began his presidency admitting that he knew "little about ships," but he quickly came to preside over the largest national armada to that time, not eclipsed until World War I. Written by prize-winning historian Craig L. Symonds, Lincoln and His Admirals unveils an aspect of Lincoln's presidency unexamined by historians until now, revealing how he managed the men who ran the naval side of the Civil War, and how the activities of the Union Navy ultimately affected the course of history. Nadaljevanje spodaj …

Beginning with a gripping account of the attempt to re-supply Fort Sumter --a comedy of errors that shows all too clearly the fledgling president's inexperience--Symonds traces Lincoln 's steady growth as a wartime commander-in-chief. Absent a Secretary of Defense, he would eventually become de facto commander of joint operations along the coast and on the rivers. That involved dealing with the men who ran the Navy: the loyal but often cranky Navy Secretary Gideon Welles, the quiet and reliable David G. Farragut, the flamboyant and unpredictable Charles Wilkes, the ambitious ordnance expert John Dahlgren, the well-connected Samuel Phillips Lee, and the self-promoting and gregarious David Dixon Porter. Lincoln was remarkably patient he often postponed critical decisions until the momentum of events made the consequences of those decisions evident. But Symonds also shows that Lincoln could act decisively. Disappointed by the lethargy of his senior naval officers on the scene, he stepped in and personally directed an amphibious assault on the Virginia coast, a successful operation that led to the capture of Norfolk . The man who knew "little about ships" had transformed himself into one of the greatest naval strategists of his age. A unique and riveting portrait of Lincoln and the admirals under his command, this book offers an illuminating account of Lincoln and the nation at war. In the bicentennial year of Lincoln 's birth, it offers a memorable portrait of a side of his presidency often overlooked by historians.


The Ericsson Caloric Engine of 1833

The granting of Stirling's patent did not deter Ericsson from further experimentation and research with hot air engines and in 1833 he built and exhibited in London an engine having a double-acting working cylinder 14 inches in diameter which developed five horsepower and worked on the cycle advocated by Glazebrook.

To the original conception of Glazebrook, Ericsson added a device which he called a regenerator. It consisted of a number of copper tubes through which the air passed on its way from the compressing cylinder to the heating unit in the furnace. The exhaust from the working cylinder passed around these tubes, transferring some of its heat to them and thence to the incoming charges of air, thus to a considerable extent improving the economy of the machine.

The engine, like other hot air engines, had a relatively high thermodynamic efficiency, but much trouble was experienced with the lubrication of the cylinder and valves. Mineral lubricants such as are now used in the cylinders of internal combustion engines and high pressure steam engines were then unknown, and it is not surprising that trouble occurred with tallow-lubricated pistons and cylinders working at temperatures of 450 degrees F.

In 1839 Ericsson came to New York, making the Atlantic voyage on Great Western in the stormy month of November and suffering frightfully from seasickness during the greater part of an exceptionally rough twenty-two-day passage. It does not appear that he originally intended to settle in America, but the progressive spirit of the country made a strong appeal to him and offered great opportunities to a man of his energy and unique gifts.

Throughout the forties he was busy with the promotion of the screw propeller in the United States, with the design and construction of the U.S.S. Princeton, and the development of a successful steam fire engine. He found time, however, for further experiments with hot air engines and in the forties constructed several such engines in New York.


John Ericson German Actor

John Ericson was previously married to Karen Ericson and Milly Coury (1953) .

John Ericson was in a relationship with Pier Angeli (1950) .

Približno

John Ericson was in 2 on-screen matchups, including Myrna Fahey in Bonanza (1959) and Mari Blanchard in The Cruel Tower (1956) .

Contribute

Help us build our profile of John Ericson! Prijavite se, če želite dodati informacije, slike in odnose, se pridružite razpravam in pridobite zasluge za svoje prispevke.

Statistika odnosov

VrstaSkupajNajdaljšiAverageNajkrajša
Dating1 2 months, 1 day - -
Poročena2 68 years, 6 months 58 years 47 years, 6 months
Skupaj3 68 years, 6 months 38 years, 8 months 2 months, 1 day

Podrobnosti

Ime Janez
Priimek Ericson
Polno ime ob rojstvu John Meibes
Starost 93 (age at death) years
Rojstni dan 23rd September, 1926
Rojstni kraj Düsseldorf, Germany
Died 3rd May, 2020
Višina 6' 2" (188 cm)
Zgradite Atletski
Nebesno znamenje Virgo
Spolnost Naravnost
Etnična pripadnost Bela
Državljanstvo Nemško
Besedilo poklica Igralec
Poklic Igralec
Leto (a) Aktivno 1950�

John Ericson (sometimes spelled Erickson born Joachim Alexander Ottokar Meibes September 25, 1926) is a German-American film and television actor.


John Ericsson

John Ericsson (July 31, 1803 – March 8, 1889) was a Swedish-American inventor and mechanical engineer, as was his brother Nils Ericson. He was born at Långbanshyttan in Värmland, Sweden, but primarily came to be active in England and the United States. He is remembered best for designing the steam locomotive Novelty (in partnership with engineer John Braithwaite) and the ironclad ship USS Monitor.

'Brita Sophia Yngström och maken Gruvfogde Olof Ericssons söner är Kanal- och järnvägsbyggare Kapten och Ingengör Nils Ericsson f 1802 i Långbanshyttan, Värmland, † 1870 i Stockholm, adlad Ericson 1854, och den världsberömde yngre brodern uppfinnaren John Ericsson f 1803 i Långbanshyttan, Värmland, † 1889 i New York, begravd i eget gravkapell i Filipstad, Värmland. Sedan uppfinnaren till propellern och konstruktör av det amerikanska krigsfartyget USS Monitor John Ericssons kvarlevor den 23 augusti 1890 under stora högtidligheter förts ombord på pansarkryssaren USS Baltimore vid Battery Place i New York, fördes kistan till det gamla hemlandet och emottogs i Stockholm den 14 september 1890. I en intressant redogörelse 1897 anses det att sönernas begåvning i främsta rummet var ett arv efter Brita Sophia Yngström. Hon hade b intelligens och energi och hade därtill erhållit en synnerligen vårdad uppfostran av sin far, som särskilt stimulerat hennes intresse för naturvetenskaperna. Biographica: Ericsson, RÅ.